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VECTOR FIELDS OF A FINITE TYPE
G-STRUCTURE

A. M. AMORES

0. Introduction

Let M be a connected manifold, g a Riemannian metric on M, and &
either the set of Killing vector fields or the set of conformal vector fields. The
following theorems are known.

(0.1) Theorem. IfU C Misopenand X,Y € %, then X|U = Y|U implies
X = Y on the whole of M.

(0.2) Theorem. If M and g are analytic, M is simply connected, and X is a
Killing (resp. conformal) field on U, open subset of M, then there is a unique
extension of X to an analytic Killing (resp. conformal) field defined on the whole
of M.

These theorems were proved in [4] for the Killing case and in [3] for the
conformal case. The aim of this paper is to generalize them, when ¥ is taken
to be set of vector fields of a finite type G-structure. The precise definitions
and statements of the theorems are in §2 and §3. §4 is devoted to proving
some auxiliary results on fields on a parallelisable manifold. When no
precision is made about the differentiability class of a manifold or map, it will
be understood that the definition or result works for both the category of
manifolds of class infinity and real analytic manifolds.

1. Parallelism fields
Let m = dim M, and # be a parallelism on M; that is, a 1-exterior form on
M with values in R™ such that for all x € M, #(x) : TM(x) > R™ is an
isomorphism. Suppose that X is a vector field on M, and {J,: t € R} the
corresponding pseudogroup of diffeomorphisms. Then we say that X is a
parallelism field if for all # € R, Y*7 = m, or, equivalently, if Lyw = 0. Let
(', - - -, u™) be a coordinate system on U. If X isafieldon Uand ¢: I - U
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is a smooth curve, I being an interval, we write

X=> X‘;%;, ci(t)y=uleoc(t) fortel,1<i<m,

7= (vgi duj)ei,
i

where {e,, - - - , e,,} is the canonical basis of R™.
(l.1) Lemma. If X is a parallelism field on U, then the curve t—
(XYoo (D), -+, X™ o c(d)is a solution of the linear system

=2 @)X 1<i<m,
5

where

&) = -3 pife() TELD L0,

and (pj"(x)) is the inverse matrix of 'n;.’(x) for all x € U.

Proof. If is just an easy computation, if we write the equation Lyw - ¢’'(?)
= 0 in local coordinates, ¢'(t) € TM{(c(t)) being the velocity of ¢ at the point
t.

(1.2) Lemma. If X, Y are parallelism fields on M, and X(xy) = Y(x,) for
some x, € M,then X = Yon M.

Proof. Let x; be an arbitrary point of M, and ¢: [0, 1]—> M a smooth
curve such that ¢(0) = xq, ¢(1) = x,. We prove that X = Y on ¢([0, 1]); hence
X(x;) = Y(x;). Certainly, X(c(0)) = Y(c(0)). The idea—quite standard—is to
show that if X = Y on ¢([0, 7]), with 0 < T < 1, there is ¢ > 0 such that
X =Y on ¢(0, 7 + ¢€]), and this is done by using (1.1). If (u; U) is a
coordinate system around ¢(r), there is € > O such thatc(([t — &, 7 + e) C U,
and the curves (X’ ° ¢) and (Y’ < c) defined on (1 — ¢, T + ¢) are solutions of
the system (1.1). Since they coincide for ¢ = 1, they are equal on their domain
of definition. This proves X = Y on ¢([0, 7 + &]).

(13) Lemma, Let M be analytic, and (u; U) a coordinate system such that
u(U) C R™ is convex. Then any parallelism field X defined on an open
connected subset V of U can be extended to a unique parallelism field Y on U.

Proof. The uniqueness of the extension follows from (1.2) or, more easily,
from the fact that if two analytic vector fields coincide on ¥V, they must
coincide in the connected component of ¥ in the domain of definition.

Choose xy € V. Define c,: [0, 1]— U for x € U as the curve determined
by the condition u(c (7)) = (1 — H)u(xy) + tu(x). The map U X [0, 1] — U,
(x, ) = ¢.(?) is analytic. Clearly c, is a curve joining x, and x. Substitute ¢
for ¢, in the formula for éf’,}(t) in (1.1). One gets a family of analytic maps
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éﬂj(x, t), and we have a linear system S, of equations depending on a
parameter x. For each x € U the solution () with initial condition a/(0) =
u'(x,) is defined for ¢t = 1. We define ¥ = X Y‘9/9u’ by the formula Y'(x)
= a,f(l), and show that Y is the required extension.

There is a neighborhood W of x, with the following property: If x € W,
then ¢ (1) € V for all : €0, 1). Using (1.1) and the uniqueness of the
solution we get for x € W: X'(x) = X'(c(1)) = a)(1) = Y'(x). Therefore
X|W = Y|W, and this implies, since our fields are analytic, that X = Y|V.
The field Y is a parallelism field because Lyw|, = Ly7 = 0 implies, using
analyticity once more, that L,7 = 0 on U.

2. The uniqueness theorem

Let p: @ — M be a G-structure, and P the corresponding pseudogroup of
transformations. By definition a diffeomorphism f: U— V; U, V open
subsets of M, is in P if and only if the natural lift f, to the frame bundle
sends &|U into &|V. If f € P, we denote this natural restriction of f, by f,,
and we still call it the natural lift. If X is a vector field on M, and {,; ¢ € R}
the corresponding pseudogroup induced by X, we say that X is an @-field if
forall 7 € R, y, € P.If this is the case, X has a natural lift to a field X, on &
which projects on X. The pseudogroup determining X, is just {({,)os £ € R}.
We denote the set of &-fields by %. If U c M is open, then %,, will denote
the set of @|,-fields. Let @ be the canonical 1-form on & with values in R™.
It is well known that f§§ = @ forf € P,and Ly § = OforX € &

We now quote some facts about Sternberg prolongations. The reader
interested in details should go to [1], whose notation we keep as much as
possible. If § is the Lie algebra of G, we denote by §, the kth prolongation of
§,and write E, = R"® S DG, ®- - - B§,.

We collect the necessary facts in the following theorem:

(2.1) Theorem. There is a sequence of manifolds &, (k > 0), maps p,:
& — &, _, (k > 1) and groups G, (k > 0) such that the following hold:

(@) & = &, G, = G, and G, is isomorphic to the vector group G, for k >

®) p.: @ — @,._, is a G-structure. All the maps p, admit global sections;
hence, these principal bundles are trivial.

©) If 8, is the canonical 1-form on &, then 0, takes values in E, _,.

(d) If X € F, one can define inductively a lift X, of X to a fieid in &, for
each k > 0. X, is defined as in the paragraph above, and X, = (X, _,), for
k> 1

We give two more elementary lemmas; the first is a simple exercise, the
second is in [2, V1.2.1].



4 A. M. AMORES

(22) Lemma. Let g: X — Y be a quotient map of topological spaces (this is
the case if q is continuous, open and onto). If g”\(y) is connected for all y € Y,
and Z C Y is open and connected, then q~'Z is connected.

(23) Lemma. If X, is the natural lift of X € %, then it has the following
properties:

(@) Forallg € G, g, Xo = X,

(®) Ly 8 =0,

(c) X, projects on X.

Conversely, if Y is a field on an open subset U of @, satisfying (2) and (b),
then Y is projectable onto a field X on pUand Y = X, 0n U.

We get from this lemma that if X € ¥, then Ly 6, = 0 for all k > 0. We
make from now on the hypothesis that § is of finite type; hence there is
k > 1 such that §, _, # 0 and §, = 0. In this case 0, is a parallelism on &,,
and X, is a parallelism field for 6, if X € 9.

(2.4) Proposition. If M is connected, and X, Y € ¥ are such that for some
q. € &, Xi(aq) = Y (a,), then X = Y. ‘

Proof. We get from (2.1}a), (2.1)(b) and (2.2) that the connected compo-

nents of @, are the sets (p, °© - - - ° p.)"'C = C, where C is a component of
&. If g, € C,, then X, = Y, on C, by (1.2). Since these fields project on X
and Yand(pep,° -+ °op)C. = M, wegetX =Y.

(2.5) Theorem. If M is connected, and X, Y € § are such that X|U =
Y|U for some open U C M, then X = Y.

Proof. By definition of a k-lift, if X|U = Y|U then X, = Y, on
(pe° -+ op)'U C &, and the theorem follows from (2.4).

This generalizes (0.1) since the Lie algebras of the orthogonal group and
the conformal group are of finite type [1, 1.2}.

3. The extension theorem

(3.1) Proposition. Let the structure @ be analytic, and Z a vector field on
an open connected subset W of @,.. Let V. C M be open, and X € ¥, such that
Xe=ZonWn(pe -+ op)'V. Then Z is projectable on a field Y €
Gy withU=(pe - pIW,Y=XonUnNV,and Y,|W = Z.

Proof. Consider the 1-forms L6, and Ly 6,; they coincide on W N
(p° --- °p)'V, and by (2.3)(b) the second form is O there. Thus the
analytic form L;8, = 0 on W which is connected. Analogously one proves
that for all g € G, (g).Z — Z = 0 on W. Using (2.3) once more, we get
that Z projects on a field Z, defined on p, (W) C &,_,, and (Z,), = Z on W.
It is easy to construct with these ideas a sequence of fields Z, defined
on (Pr—psr1® ° - °poW c &._, which coincide with X,_, on
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Prcpsr1® * - °PIWn(pe -+ p_,)'V, and on the common domain
of definition Z, equals the p-lift of Z,, .. This construction can be carried
down to M with the convention & |, = M and p, = p. It is immediate that the
field Y = Z, _, has the required properties.

(3.2) Proposition. Suppose that @ is analytic of finite type k. Let (u; U) be
a chart such that u(U) C R™ is convex. If V' C U is open and connected, then
any X € 9, has a unique extension to a field Y € %,.

Proof. The uniqueness is clear from analyticity or (2.5). We prove the
existence, assuming first that G is connected. Take a chart (#’; U’) on G such
that #'(U’) is convex. We get easily from (2.1)(a) and (2.1)(b) that there is an
open set W C @, diffeomorphic to the convex set u(U) X ' (U’) X §,
X - - - X8, which projects onto U. On the other hand (p © - - - °p )"V
C @, is connected by (2.2), since G is connected. Now by applying (1.3) we
obtain a field Z on W equal to X, on W n(peo --- °p)'V, which is
connected. By (3.1) Z projects on Y defined on U, and so is the required
extension.

If G is arbitrary, let C ¢ @ be a connected component of &, and let H be
the connected component of the identity in G. It is clear that C is an
H-structure on M of finite type k. If %" is the set of C-fields, we proved in the
preceding paragraph that there is a field Y € %], which extends X. We only
need to show that Y € %,. Let {{,; t € R} be pseudogroup of Y. Then
YeEF,ifforallt€ Randa € &, (§,)ya € &. Writinga = cg withc € C
and g € G we get (Y)o2 = (¥)o(cg) = (¥ )oc)g € Cg C @. This ends the
proof.

(3.3) Theorem. (Generalization of (0.2)). Let M be a connected simply
connected manifold, and @ an analytic G-structure on M of finite type. If U is
an open connected subset of M and X € F,, then X has a unigue extension to a
fieldY € F.

Proof. The uniqueness of the extension follows from analyticity or (2.5).
The idea for proving the existence of the extension is a standard one in
algebraic topology, and therefore we just give a sketch of the proof. Fix
xo € U. For each x; € M choose a continuous curve c: [0, 1] > M with
¢(0) = x, and ¢(1) = x,. One shows: (a) There are a neighborhood N of
¢([0, 1)) and a field Z € %,, which coincides with X in a neighborhood of x,.
(b) If ¢y, ¢, are curves joining x; and x, and if Z,, Z, are fields constructed as
in (), then Z, = Z, on a neighborhood of x,. It follows from (a) and (b) that
if we define the field Y on M by Y(x,) = Zy(x,) = Z,(x,), then Y is well
definedand ¥ € %.

To prove (a) one considers the set § of s € [0, 1] such that there are a
neighborhood M of ¢([0, s]) and a field Z € %, which coincides with X in a
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neighborhood of x,. We want to show that S = [0, 1]. This follows from the
fact that 0 € S, S is an interval open in [0, 1], and sup S € S by (3.2).

The proof of (b) is analogous. If (s, £) - ¢,(7) is a2 homotopy between ¢ and
¢,, consider S, the set of s € [0, 1] such that there are a neighborhood N of
{c.(1): 0<r <5 0<t<1}andafield Z € %5 which coincides with X on
a neighborhood of x,. One shows that 0 € S, S is an interval open in [0, 1]
and sup S € S. This last fact requires (3.2) for its proof. It follows then that
S = [0, 1] proving (b).

Remark. Our main results (2.5) and (3.3) are also valid when M is the
family of infinitesimal transformations of a linear connection w on a G-struc-
ture 4. If @ is the fundamental form on 4, then # = @ @ w is a parallelism on
A with values on R™ @ §, and the natural lift of X is a field of the
parallelism « [1]. The reader may check easily that the methods of proof of
(2.5) and (3.3) work in this new situation.
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